Garis y = 2x + 3 Dicerminkan Terhadap garis x = 4. Apakah Hasil Pencerminannya?

Sekarang kita akan membahas masalah pencerminan terhadap garis x = a. Nilai "a" berubah-ubah tergantung soalnya.

Nanti akan diberikan rumusnya.



Ok, mari kita lihat lagi soalnya..





Soal :

1. Garis y = 2x + 3 dicerminkan terhadap garis x = 4. Apakah hasil pencerminan garis tersebut?





Dicerminkan terhadap garis x = a.

Dalam soal diatas, dicerminkan terhadap garis x = 4.

Jadi a = 4.

Ketika dicerminkan terhadap garis x, maka yang berubah hanyalah x-nya saja. Y tetap dan tidak perlu dihitung.



Rumus pencerminan


Ketika dicerminkan terhadap x = a, maka rumus yang digunakan adalah :

(x', y') = (2a - x, y)

Ini artinya :

  • x' = 2a - x
  • y' = y ....(1)
Nah, "y" tidak mengalami perubahan. 
Tetap!!




Mencari nilai "x"


Nilai "x" diperoleh menggunakan rumus diatas.

Sekarang perhatikan!!

x' = 2a - x

  • ganti a dengan 4 (lihat lagi diatas ya)
x' = 2.4 - x

x' = 8 - x
  • pindahkan -x ke ruas kiri sehingga menjadi +x
  • pindahkan x' ke ruas kanan sehingga menjadi -x'
x = 8 - x' .....(2)




Hasil pencerminan


Kita sudah menemukan nilai "x" dan sekarang masukkan nilai x ini ke dalam rumus persamaan garis awal.

y = 2x + 3

  • ganti y dengan y' ( persamaan 1)
  • ganti x dengan 8 - x' (persamaan 2)
y' = 2(8-x') + 3

y' = 16 - 2x' + 3

y' = -2x' + 19
  • karena semuanya sudah mengandung aksen ('), kita tinggal hilangkan saja.
y = -2x + 19.

Jadi pencerminan garis y = 2x + 3 terhadap garis x = 4 adalah y = -2x + 19








Soal :

2. Garis y = x - 4 dicerminkan terhadap garis x = 2. Bagaimanakah hasil pencerminan garis tersebut?




Caranya masih sama dengan soal pertama.



Rumus pencerminan


Ketika dicerminkan terhadap x = a, maka rumus yang digunakan adalah :

(x', y') = (2a - x, y)

Ini artinya :

  • x' = 2a - x
  • y' = y ....(1)



Mencari nilai "x"


x' = 2a - x

  • ganti a dengan 2 (sesuai soal)
x' = 2.2 - x

x' = 4 - x
  • pindahkan -x ke ruas kiri sehingga menjadi +x
  • pindahkan x' ke ruas kanan sehingga menjadi -x'
x = 4 - x' .....(2)




Hasil pencerminan


Kita sudah menemukan nilai "x" dan sekarang masukkan nilai x ini ke dalam rumus persamaan garis awal.

y = x - 4

  • ganti y dengan y' ( persamaan 1)
  • ganti x dengan 4 - x' (persamaan 2)
y' = (4-x') - 4

y' = 4 - x' + 4

y' = -x' + 8
  • karena semuanya sudah mengandung aksen ('), kita tinggal hilangkan saja.
y = -x + 8

Jadi pencerminan garis y = x - 4 terhadap garis x = 2 adalah y = -x + 8


Post a Comment for "Garis y = 2x + 3 Dicerminkan Terhadap garis x = 4. Apakah Hasil Pencerminannya?"